Roll No. \square Total No. of Pages: 03
Total No. of Questions: 09
B. Tech. (Sem.- $\mathbf{2}^{\text {nd) }}$

ENGINEERING MATHEMATICS-II
 Subject Code: AM-102
 Paper ID: [A0119]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATE:

1. Section-A, is Compulsory.
2. Attempt Five questions from section B and section C with at least two questions each from section B and Sections C.

Section-A

Q.1.
(a) Show that the vectors $\mathrm{x}_{1}=(1,2,4), \mathrm{x}_{2}=(2,-1,3), \mathrm{x}_{3}=(0,1,2)$ and $\mathrm{x}_{4}=(-3,7,2)$ are linearly dependent, and find the relation between them.
(b) Solve $\sec ^{2} x$ tan $y d x+\sec ^{2} y \tan x d y=0$.
(c) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=\sin 3 x$.
(d) Prove that $\nabla^{2}\left(r^{m}\right)=m(m+1) r^{m-2}$.
(e) If $\vec{A}=\left(3 x z^{2}\right) \hat{\imath}-(y z) \hat{\jmath}+(x+2 z) \hat{k}$ find $\operatorname{curl}(\operatorname{curl} \vec{A})$
(f) State any five characterstics of Normal curve
(g) State Green's theorem in the plane.
(h) A die is thrown 10 times. If getting an even number is a success. What is the probability of getting at least 6 successes.
(i) Fit a straight line to the following data considering y as the dependent variable.

x	1	2	3	4	5
y	5	7	9	10	11

(j) Define types of errors in testing of hypothesis.

Section-B

Q.2. (a)Find the Eigen values and the corresponding Eigen vectors of the matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
-2 & 2 & -3 \tag{4}\\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

(b) Reduce the following quadratic form to sum of squares by linear transformations:
$10 x^{2}+y^{2}+z^{2}-6 x y-2 y z+6 z x$.
Q.3. (a) Solve $\left(x y^{2}-2 x^{2} y^{3}\right) d x+\left(x^{2} y-x^{3} y^{2}\right) d y=0$
(b) Solve the equation:
$16 x^{2} y+2 p^{2} y-p^{3} x=0$, Where $p=\frac{d y}{d x}$.
Q.4. (a) Use method of variation of parameters to solve the following differential equation:
$y^{\prime \prime}+4 y=4 \sec ^{2} 2 x .$.
(b) Obtain the complete solution of the differential equation:
$x^{3} \frac{d^{3} y}{d x^{3}}-2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$.
Q.5. (a) Show that the frequency of free vibrations in a closed electrical circuit with inductance $L \&$ capacity C in series is $\frac{30}{\pi \sqrt{L C}}$ per minute.
(b)A particle executing S.H.M has amplitude ' a '. Show that the distance of the point from the center at which the velocity is half of the maximum velocity is $\frac{\sqrt{3 a}}{2}$

Section-C

Q.6. (a) A fluid motion is given by $\vec{V}=(y+z) \hat{\imath}-(Z+x) \hat{\jmath}+(x+y) \hat{k}$ Is this motion irrotational. If so, find velocity potential.
$\vec{F} . \hat{n} d S=3 / 2$, where $\vec{F}=(4 x z) \hat{\imath}-\left(y^{2}\right) \hat{\jmath}+(y z) \hat{k} \& S$ is the surface of the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0, z=1$
Q.7. (a) Verify Stoke's theorem for the vector field $\vec{F}=y \hat{\imath}-z \hat{\jmath}+x \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
(b)Use divergence theorem to evaluate $\iint_{\mathrm{s}} \vec{F} . \hat{n} d S$, where $\vec{F}=x^{3} \hat{\imath}+\left(x^{2} \mathrm{y}\right) \hat{\jmath}+\left(x^{2} \mathrm{z}\right) \hat{k} \& \mathrm{~S}$ is the surface bounding the region $x^{2}+y^{2}=a^{2}, z=0, z=b$.
Q.8. (a) Obtain Poisson distribution as a limiting case of binomial distribution.
(b)In a Normal distribution 7% of the items are under $35 \& 89 \%$ are under 63.

What are the mean and standard deviation of the distribution.
Q.9. (a) In one sample of 8 observation, the sum of the squares of the deviations of the sample values from the sample mean was $84.4 \&$ in another sample of 10 observations. It was 102.6. Test whether the two samples have been drawn from two normal population with the same variance (F for $7 \& 9$ d.f at 5% level of significance=3.29)
(b)The heights of 10 males of a given locality are found to be
$70,67,62,68,61,68,70,64,64,66$ inches. Is it reasonable to believe that the average height is greater than 64 inches. Given the tabulated value of t for 9 d.f at 5% level of significance for single tail test is 1.83

END

